个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:概率论与数理统计. 金融数学与保险精算
办公地点:数学科学学院5楼
电子邮箱:wangxg@dlut.edu.cn
A note on the one-step estimator for ultrahigh dimensionality
点击次数:
论文类型:期刊论文
发表时间:2014-04-01
发表刊物:JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
收录刊物:SCIE、EI
卷号:260
页面范围:91-98
ISSN号:0377-0427
关键字:Cross validation; High-dimensional data; Model selection consistency; One-step estimator; Partial orthogonality
摘要:The one-step estimator, covering various penalty functions, enjoys the oracle property with a good initial estimator. The initial estimator can be chosen as the least squares estimator or maximum likelihood estimator in low-dimensional settings. However, it is not available in ultrahigh dimensionality. In this paper, we study the one-step estimator with the initial estimator being marginal ordinary least squares estimates in the ultrahigh linear model. Under some appropriate conditions, we show that the one-step estimator is selection consistent. Finite sample performance of the proposed procedure is assessed by Monte Carlo simulation studies. (C) 2013 Elsevier B.V. All rights reserved.