个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:概率论与数理统计. 金融数学与保险精算
办公地点:数学科学学院5楼
电子邮箱:wangxg@dlut.edu.cn
Bridge estimation for generalized linear models with a diverging number of parameters
点击次数:
论文类型:期刊论文
发表时间:2010-11-01
发表刊物:STATISTICS & PROBABILITY LETTERS
收录刊物:SCIE、Scopus
卷号:80
期号:21-22
页面范围:1584-1596
ISSN号:0167-7152
关键字:Generalized linear models; Variable selection; Bridge estimator; Oracle; Bayesian information criterion (BIC)
摘要:Variable selection is fundamental to high dimensional generalized linear models. A number of variable selection approaches have been proposed in the literature. This paper considers the problem of variable selection and estimation in generalized linear models via a bridge penalty in the situation where the number of parameters diverges with the sample size. Under reasonable conditions the consistency of the bridge estimator can be achieved. Furthermore, it can select the nonzero coefficients with a probability converging to 1 and the estimators of nonzero coefficients have the asymptotic normality, namely the oracle property. Our simulations indicate that the bridge penalty is an effective consistent model selection technique and is comparable to the smoothly clipped absolute deviation procedure. A real example analysis is presented. (C) 2010 Elsevier B.V. All rights reserved.