王宝民

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 建筑材料研究所所长、土木水利国家级实验教学中心常务副主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:建设工程学院

学科:材料学. 结构工程. 市政工程

办公地点:大连理工大学3号实验楼

联系方式:0411-84707101

电子邮箱:wangbm@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Porosity and pore size distribution measurement of cement/carbon nanofiber composites by H-1 low field nuclear magnetic resonance

点击次数:

论文类型:期刊论文

发表时间:2014-02-01

发表刊物:JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION

收录刊物:SCIE、EI、ISTIC、Scopus

卷号:29

期号:1

页面范围:82-88

ISSN号:1000-2413

关键字:carbon nanofibers (CNFs); cementitious materials; mechanical properties; microstructure; porosity; nuclear magnetic resonance

摘要:The dispersion effect of carbon nanofibers (CNFs) in aqueous solution and the mechanical properties, porosity, pore size distribution and microstructure of CNFs reinforced cement-based composites were investigated in this paper. To achieve effective dispersion of CNFs, a method utilizing ultrasonic processing and a commercially surfactant were employed. CNFs were incorporated to cementitious materials with the addition of 0.1 wt% and 0.2 wt% of cement with a water/cement ratio of 0.35. The mechanical properties of CNFs/cement composites were analyzed, the porosity and pore size distribution were characterized by H-1 low field nuclear magnetic resonance (NMR), and the microstructure was observed by scanning electron microscopy (SEM). The results indicate that the optimum concentration ratio of MC to CNFs is 2:1 for dispersing in aqueous solution. Moreover, in the field of mechanical properties, CNFs can improve the flexural strength and compressive strength. The increased mechanical properties and the decreased porosity of the matrices correspond to the increasing CNFs content and CNFs act as bridges and networks across cracks and voids.