Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Wei Zhang

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:University of Leeds
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics
Discipline:Engineering Mechanics. Biomechanics and Nanomechanics. Materials Physics and Chemistry
Business Address:Bldg.of Engineering Mechanics, Rm407
Contact Information:wei.zhang@dlut.edu.cn
E-Mail:wei.zhang@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Frequency Analysis and Anti-Shock Mechanism of Woodpecker's Head Structure

Hits : Praise

Indexed by:期刊论文

Date of Publication:2014-04-01

Journal:JOURNAL OF BIONIC ENGINEERING

Included Journals:ISTIC、CSCD、SCIE、EI

Volume:11

Issue:2

Page Number:282-287

ISSN No.:1672-6529

Key Words:woodpecker; anti-shock; frequency; modal analysis; stress spectrum

Abstract:The mechanical properties of the skull and the anti-shock characteristics of woodpecker's head were investigated by experiment and numerical simulation. We measured the micro-Young's modulus of the skull by nano-indentation method and calculated the macro-equivalent Young's modulus of the skull at different positions using homogenization theory. Based on the Computerized Tomography (CT) images of woodpecker head, we then built complete and symmetric finite element models of woodpecker's skull and its internal structure and performed modal analysis and stress spectrum analysis. The numerical results show that the application of pre-tension force to the hyoid bone can increase the natural frequency of woodpecker's head. The first natural frequency under the pre-tension force of 25 N reaches 57 Hz, which is increased by 21.3% from the non-pre-tension state and is more than twice the working frequency of woodpecker (20 Hz 25 Hz). On the application of impact force to the tip of beak for 0.6 ms, high magnitudes of stress component occur at around 100 Hz and 8,000 Hz, far away from both the working frequencies and the natural frequencies of woodpecker head. The large gaps among the natural, working and stress response frequencies enable the woodpecker to effectively protect its brain from the resonance injury.