武文华

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:力学与航空航天学院

学科:工程力学. 固体力学. 船舶与海洋结构物设计制造. 计算力学. 航空航天力学与工程

办公地点:综合实验1号楼(海宇楼)605

联系方式:Email: lxyuhua@dlut.edu.cn 565598@qq.com

电子邮箱:lxyuhua@dlut.edu.cn

扫描关注

论文成果

当前位置: wuwenhua >> 科学研究 >> 论文成果

Current Model Analysis of South China Sea Based on Empirical Orthogonal Function (EOF) Decomposition and Prototype Monitoring Data

点击次数:

论文类型:期刊论文

发表时间:2019-04-01

发表刊物:JOURNAL OF OCEAN UNIVERSITY OF CHINA

收录刊物:SCIE

卷号:18

期号:2

页面范围:305-316

ISSN号:1672-5182

关键字:current profile model; failure criteria; prototype monitoring; inverse first-order reliability method (IFORM); Characteristic profile current (CPC)

摘要:Environmental load is the primary factor in the design of offshore engineering structures and ocean current is the principal environmental load that causes underwater structural failure. In computational analysis, the calculation of current load is mainly based on the current profile. The current profile model, which is based on a structural failure criterion, is conducive to decreasing the uncertainty of the current load. In this study, we used prototype monitoring data and the empirical orthogonal function (EOF) method to investigate the current profile in the South China Sea and its correlation with the design of underwater structural strength and the dynamic design of fatigue. The underwater structural strength design takes into account the size of the structure and the service water depth. We propose profiles for the overall and local designs using the inverse first-order reliability method (IFORM). We extracted the characteristic profile current (CPC) of the monitored sea area to solve dynamic design problems such as vortex-induced vibration (VIV). We used random sampling to verify the feasibility of using the EOF method to calculate the CPC from the current data and identified the main problems associated with using the CPC, which deserve close attention in VIV design. Our research conclusions provide direct references for determining current load in this sea area. This analysis method can also be used in the analysis of other sea areas or field variables.