location: Current position: Home >> Scientific Research >> Paper Publications

Highly efficient tetrafluoroethylene recovery for batch polymerization system: Membrane preparation and process development

Hits:

Indexed by:期刊论文

Date of Publication:2018-03-01

Journal:JOURNAL OF MEMBRANE SCIENCE

Included Journals:SCIE、EI

Volume:549

Page Number:403-410

ISSN No.:0376-7388

Key Words:Gas membrane separation; Tetrafluoroethylene; Polymerization purge; Pseudo-steady process; Process optimization

Abstract:In tetrafluoroethylene (TFE) batch polymerization, H-2 is utilized to stabilize pressure and control reaction degree. TFE lost in the purge can account for about 6.0% of the loaded monomer. In this work, membrane-based separation system was presented to effectually reduce TFE loss. Polyimide asymmetric membrane with J(H2) up to 196 GPU and alpha(H2/TFE) higher than 1680 was developed for the separation. A pseudo-steady process was customized to sufficiently complete TFE recovery within the 30-min idle period after batch polymerization. With the procedure that H-2-enriched permeate is compressed back into the reactor, it is succeeded to overcome the limits that the purge is gradually falling in pressure and the TFE-enriched stream is hazardous in compression. In this instance, TFE recovery ratio was increased to about 90%. For a 5.0-kt/a TFE polymerization unit, the investment for the separation system is about 2.56 x 10(5) USD, the running payout is less than 4.35 x 10(4) USD/a, and meanwhile the annual gross profit can be up to 3.126 x 10(6) USD. On the whole, gas membrane separation is a promising technique to reduce TFE loss in the batch polymerization processes.

Pre One:Hybrid Control Mechanism of Crystal Morphology Modification for Ternary Solution Treatment via Membrane Assisted Crystallization

Next One:FePc-TiO2/CS复合材料制备及光催化降解染料废水