教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 化工学院
学科: 应用化学. 精细化工. 生物化工
办公地点: 西校区E-204
联系方式: xiaoyi@dlut.edu.cn 0411-84986251
电子邮箱: xiaoyi@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2013-08-06
发表刊物: ANALYTICAL CHEMISTRY
收录刊物: PubMed、SCIE、EI、Scopus
卷号: 85
期号: 15
页面范围: 7076-7084
ISSN号: 0003-2700
摘要: Nitric oxide (NO) is a ubiquitous cellular messenger molecule in the cardiovascular, nervous, and immune systems. Mitochondrion is the main area where endogenous NO is synthesized by inducible NOS enzymes in mammalian cells. Thus, real-time monitoring NO in mitochondria is very meaningful for NO chemical biology. Although a variety of fluorescent probes for NO have been successfully developed, they are not suited for detecting mitochondrial NO because none of them can specifically localize in mitochondria. Herein, Mito-Rh-NO, the first mitochondria-targetable "turn-on" fluorescent probe for NO, has been developed through attaching a triphenylphosphonium to a rhodamine spirolactam. The characteristics of this probe are as following: (1) Mito-Rh-NO exhibits high sensitivity toward NO. In solution, Mito-Rh-NO responds to NO by significant fluorescence enhancement up to 60-fold, and its NO detection limit is as low as 4.0 nM. (2) The NO sensing of Mito-Rh-NO is highly selective, which will not interfere with the other reactive oxygen and nitrogen species. (3) Mito-Rh-NO has a low cytotoxic effect: after being treated with 10 mu M Mito-Rh-NO for 24 h, the survival rate is higher than 90%. (4) Mito-Rh-NO specifically localizing in mitochondria: colocalization experiment of Mito-Rh-NO and Rh 123, a typical mitotracker, shows the merged fluorescent microcopy image with a high Pearson's colocalization coefficient 0.92 and overlap coefficient 0.99. (5) Mito-Rh-NO demonstrates high applicability for real-time monitoring of mitochondrial NO in live cells. Both the exogenous NO released by the donor NOC13 and endogenous NO generated in cells under stimulation have been visualized under confocal microscopy.