熊巍

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:西校区环境楼B407

电子邮箱:xiongwei@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hollow porous zinc cobaltate nanocubes photocatalyst derived from bimetallic zeolitic imidazolate frameworks towards enhanced gaseous toluene degradation.

点击次数:

论文类型:期刊论文

发表时间:2018-01-12

发表刊物:Journal of colloid and interface science

收录刊物:SCIE、EI、PubMed

卷号:516

页面范围:76-85

ISSN号:1095-7103

关键字:Hollow nanocubes,Metal-organic frameworks,Photocatalyst,Self-sacrificial template,Zn(x)Co(3−)(x)O(4)

摘要:Aiming at promoting the photocatalytic performance of spinel oxides, an efficient method of constructing hollow porous zinc cobaltate (ZnxCo3-xO4) nanocubes was established in this work. Bimetallic zeolitic imidazolate frameworks (ZIFs) were prepared through a facile self-assembly strategy, then hollow ZnxCo3-xO4 nanocubes were obtained by calcining the bimetallic ZIFs precursor. The structural features and optical properties of the ZnxCo3-xO4 nanocubes were comprehensively investigated by a series of characterization techniques. With higher specific surface area (about 100 m2 g-1), enhanced light absorbance in the whole range of 350-800 nm and lowered recombination of photogenerated electron-hole pairs, these hollow nanocubes demonstrated attractive photocatalytic activity in degrading gaseous toluene, superior to traditional stoichiometric ZnCo2O4 nanoparticles. The photocatalytic process and related mechanism of toluene degradation were further investigated with in situ Fourier transform infrared (FTIR) spectroscopy and electron paramagnetic resonance (EPR) techniques. Photo-induced O2- and holes were assigned as main reactive species in the photocatalytic system with hollow ZnxCo3-xO4 nanocubes. Copyright © 2018 Elsevier Inc. All rights reserved.