Indexed by:期刊论文
Date of Publication:2018-01-01
Journal:计算机科学
Included Journals:CSCD
Volume:45
Issue:1
Page Number:179-182,204
ISSN No.:1002-137X
Key Words:用户画像;多视角学习;模型融合
Abstract:电网公司的电费敏感客户往往对由用电引发的电量、电价、电费、缴费、欠费等电力服务具有强烈反应.快速定位电费敏感客户,对降低客户投诉率、提升客户满意度、树立供电企业良好的服务形象具有重要的作用.基于电网用户数据,提出了一种用于构建用户画像的多视角融合框架,该框架能够快速、准确地识别出电费敏感客户.首先,对电网用户进行了分析研究,利用双通道对不同特性的用户分别建模预测;其次,提出了多种特征萃取方法,用于构建用户多源特征体系;最后,为了充分利用多源特征,进一步提出了基于双层Xgboost的多视角融合模型.该框架在2016CCF大数据与计算智能大赛“客户画像”竞赛中获得了F1值为0.90379(第一名)的成绩,其有效性得到了验证.
Associate Professor
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:计算机科学与技术学院
Business Address:创新园大厦A1028
Contact Information:liang@dlut.edu.cn
Open time:..
The Last Update Time:..