于波

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

学科:计算数学. 金融数学与保险精算

电子邮箱:yubo@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Aggregate homotopy method for min-max-min programming satisfying a weak-normal cone condition

点击次数:

论文类型:会议论文

发表时间:2011-01-01

收录刊物:CPCI-S

卷号:50-51

页面范围:669-+

关键字:min-max-min programming; aggregate function; homotopy method; weak-normal cone condition; multiple-instance classification

摘要:Min-max-min programming is an important but difficult nonsmooth programming. An aggregate homotopy method was given for solving min-max-min programming by Bo Yu el al. However, the method requires a difficult to verify weak-normal cone condition. Moreover, the method is only theoretically with no algorithmic implementation. In this paper, the weak normal cone condition is discussed first. A class of min-max-min programming satisfying the condition is introduced. A detailed algorithm to implement the method is presented. Models arising from some applications such as support vector machine for multiple-instance classification in data mining, can be included in the problem. In the end, the aggregate homotopy method is given to solve the multiple-instance support vector machine model.