于波

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

学科:计算数学. 金融数学与保险精算

电子邮箱:yubo@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Aggregate homotopy method for semi-supervised SVMs

点击次数:

论文类型:会议论文

发表时间:2011-04-15

收录刊物:EI、Scopus

页面范围:1147-1150

摘要:Semi-supervised Support Vector Machines is an appealing method for using unlabeled data in classification. Based on a smooth approximation function named as aggregate function, a global aggregate homotopy method is presented in this paper. Compared to some existing algorithms, the new method is superior in no need of introducing extra variables or solving a sequence of subproblems. Moreover, the global convergence can make better local minima and then result in better prediction accuracy. Final numerical results reveals the efficiency of the method. ? 2011 IEEE.