个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:计算数学. 金融数学与保险精算
电子邮箱:yubo@dlut.edu.cn
Low dimensional simplex evolution - A hybrid heuristic for global optimization
点击次数:
论文类型:会议论文
发表时间:2007-07-30
收录刊物:EI、CPCI-S、Scopus
卷号:2
页面范围:470-+
关键字:global optimization; real-coded; evolutionary algorithm; differential evolution; low dimensional simplex evolution
摘要:In this paper, anew real-coded evolutionary algorithm-low dimensional simplex evolution (LDSE) for global optimization is proposed. It is a hybridization of two well known heuristics, the differential evolution (DE) and the Nelder-Mead method. LDSE takes the idea of DE to randomly select parents from the population and perform some operations with them to generate new individuals. Instead of using the evolutionary operators of DE such as mutation and cross-over, we introduce operators based on the simplex method, which makes the algorithm more systematic and parameter free. The proposed algorithm is very easy to implement, and its efficiency has been studied on an extensive testbed of 50 test problems from [I]. Numerical results show that the new algorithm outperforms DE in terms of number of function evaluations (nfe) and percentage of success (ps).