个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:计算数学. 金融数学与保险精算
电子邮箱:yubo@dlut.edu.cn
A smoothing homotopy method for variational inequality problems on polyhedral convex sets
点击次数:
论文类型:期刊论文
发表时间:2014-01-01
发表刊物:JOURNAL OF GLOBAL OPTIMIZATION
收录刊物:SCIE、EI
卷号:58
期号:1
页面范围:151-168
ISSN号:0925-5001
关键字:Variational inequality problems; Homotopy method; Smoothing projection operator; Global convergence
摘要:In this paper, based on the Robinson's normal equation and the smoothing projection operator, a smoothing homotopy method is presented for solving variational inequality problems on polyhedral convex sets. We construct a new smoothing projection operator onto the polyhedral convex set, which is feasible, twice continuously differentiable, uniformly approximate to the projection operator, and satisfies a special approximation property. It is computed by solving nonlinear equations in a neighborhood of the nonsmooth points of the projection operator, and solving linear equations with only finite coefficient matrices for other points, which makes it very efficient. Under the assumption that the variational inequality problem has no solution at infinity, which is a weaker condition than several well-known ones, the existence and global convergence of a smooth homotopy path from almost any starting point in R-n are proven. The global convergence condition of the proposed homotopy method is same with that of the homotopy method based on the equivalent KKT system, but the starting point of the proposed homotopy method is not necessarily an interior point, and the efficiency is more higher. Preliminary test results show that the proposed method is practicable, effective and robust.