于波

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

学科:计算数学. 金融数学与保险精算

电子邮箱:yubo@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Low dimensional simplex evolution: a new heuristic for global optimization

点击次数:

论文类型:期刊论文

发表时间:2012-01-01

发表刊物:JOURNAL OF GLOBAL OPTIMIZATION

收录刊物:Scopus、SCIE、EI

卷号:52

期号:1

页面范围:45-55

ISSN号:0925-5001

关键字:Global optimization; Heuristic; Real-coded; Evolutionary algorithm; Differential evolution; Low dimensional simplex evolution

摘要:This paper presents a new heuristic for global optimization named low dimensional simplex evolution (LDSE). It is a hybrid evolutionary algorithm. It generates new individuals following the Nelder-Mead algorithm and the individuals survive by the rule of natural selection. However, the simplices therein are real-time constructed and low dimensional. The simplex operators are applied selectively and conditionally. Every individual is updated in a framework of try-try-test. The proposed algorithm is very easy to use. Its efficiency has been studied with an extensive testbed of 50 test problems from the reference (J Glob Optim 31:635-672, 2005). Numerical results show that LDSE outperforms an improved version of differential evolution (DE) considerably with respect to the convergence speed and reliability.