姚伟岸

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:力学与航空航天学院

学科:计算力学. 固体力学. 工程力学

办公地点:综合一号实验楼608

联系方式:Email: ywa@dlut.edu.cn

电子邮箱:ywa@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Symplectic Analytical Singular Element for Steady-State Thermal Conduction With Singularities in Anisotropic Material

点击次数:

论文类型:期刊论文

发表时间:2018-09-01

发表刊物:JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME

收录刊物:SCIE

卷号:140

期号:9

ISSN号:0022-1481

关键字:steady-state thermal conduction; anisotropic material; singular element; finite element method; numerical modelling

摘要:Modeling of steady-state thermal conduction for crack and v-notch in anisotropic material remains challenging. Conventional numerical methods could bring significant error and the analytical solution should be used to improve the accuracy. In this study, crack and v-notch in anisotropic material are studied. The analytical symplectic eigen solutions are obtained for the first time and used to construct a new symplectic analytical singular element (SASE). The shape functions of the SASE are defined by the obtained eigen solutions (including higher order terms), hence the temperature as well as heat flux fields around the crack/notch tip can be described accurately. The formulation of the stiffness matrix of the SASE is then derived based on a variational principle with two kinds of variables. The nodal variable is transformed into temperature such that the proposed SASE can be connected with conventional finite elements (FE) directly without transition element. Structures of complex geometries and complicated boundary conditions can be analyzed numerically. The generalized flux intensity factors (GFIFs) can be calculated directly without any postprocessing. A few numerical examples are worked out and it is proven that the proposed method is effective for the discussed problem, and the structure can be analyzed accurately and efficiently.