Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Chi Zhang

Associate Professor
Supervisor of Master's Candidates


Gender:Male
Alma Mater:东北大学
Degree:Doctoral Degree
School/Department:生物医学工程学院
Discipline:Biomedical Engineering. Signal and Information Processing
E-Mail:chizhang@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Network Entropy for the Sequence Analysis of Functional Connectivity Graphs of the Brain

Hits : Praise

Indexed by:期刊论文

Date of Publication:2018-05-01

Journal:ENTROPY

Included Journals:SCIE、SSCI

Volume:20

Issue:5

ISSN No.:1099-4300

Key Words:network entropy; connectivity; brain network; dynamic network analysis; event-related analysis; driver fatigue

Abstract:Dynamic representation of functional brain networks involved in the sequence analysis of functional connectivity graphs of the brain (FCGB) gains advances in uncovering evolved interaction mechanisms. However, most of the networks, even the event-related ones, are highly heterogeneous due to spurious interactions, which bring challenges to revealing the change patterns of interactive information in the complex dynamic process. In this paper, we propose a network entropy (NE) method to measure connectivity uncertainty of FCGB sequences to alleviate the spurious interaction problem in dynamic network analysis to realize associations with different events during a complex cognitive task. The proposed dynamic analysis approach calculated the adjacency matrices from ongoing electroencephalpgram (EEG) in a sliding time-window to form the FCGB sequences. The probability distribution of Shannon entropy was replaced by the connection sequence distribution to measure the uncertainty of FCGB constituting NE. Without averaging, we used time frequency transform of the NE of FCGB sequences to analyze the event-related changes in oscillatory activity in the single-trial traces during the complex cognitive process of driving. Finally, the results of a verification experiment showed that the NE of the FCGB sequences has a certain time-locked performance for different events related to driver fatigue in a prolonged driving task. The time errors between the extracted time of high-power NE and the recorded time of event occurrence were distributed within the range [-30 s, 30 s] and 90.1% of the time errors were distributed within the range [-10 s, 10 s]. The high correlation (r = 0.99997, p < 0.001) between the timing characteristics of the two types of signals indicates that the NE can reflect the actual dynamic interaction states of brain. Thus, the method may have potential implications for cognitive studies and for the detection of physiological states.