更多
论文成果
Generalization of Linked Canonical Polyadic Tensor Decomposition for Group Analysis
点击次数:
论文类型: 会议论文
发表时间: 2019-01-01
收录刊物: EI
卷号: 11555
页面范围: 180-189
关键字: Linked tensor decomposition; Hierarchical alternating least squares; Canonical polyadic; Simultaneous extraction
摘要: Real-world data are often linked with each other since they share some common characteristics. The mutual linking can be seen as a core driving force of group analysis. This study proposes a generalized linked canonical polyadic tensor decomposition (GLCPTD) model that is well suited to exploiting the linking nature in multi-block tensor analysis. To address GLCPTD model, an efficient algorithm based on hierarchical alternating least squa res (HALS) method is proposed, termed as GLCPTD-HALS algorithm. The proposed algorithm enables the simultaneous extraction of common components, individual components and core tensors from tensor blocks. Simulation experiments of synthetic EEG data analysis and image reconstruction and denoising were conducted to demonstrate the superior performance of the proposed generalized model and its realization.

张驰

副教授   硕士生导师

性别: 男

毕业院校:东北大学

学位: 博士

所在单位:生物医学工程学院

学科:生物医学工程. 信号与信息处理

电子邮箱:chizhang@dlut.edu.cn

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学
访问量: 手机版 English 大连理工大学 登录

开通时间:..

最后更新时间:..