Personal HomePage

+

Recommended Ph.D.Supervisor Recommended MA Supervisor

Personal Information

Supervisor of Doctorate Candidates

Master Tutor

Date of Birth:1992年03月17日

Gender:Male

Alma Mater:大连理工大学

Degree:Doctoral Degree

School/Department:化工学院

Discipline:Polymer Materials. Mechanical Manufacture and Automation

Business Address:化工实验楼A201

E-Mail:zhangboyu@dlut.edu.cn

Computation of the Distribution of the Fiber-Matrix Interface Cracks in the Edge Trimming of CFRP

Date:2023-04-06  Hits:

Indexed by:期刊论文

Volume:26

Issue:1

Page Number:159-186

ISSN No.:0929-189X

Abstract:Edge trimming is commonly used to bring the CFRP components to right dimension and shape in aerospace industries. However, various forms of undesirable machining damage occur frequently which will significantly decrease the material performance of CFRP. The damage is difficult to predict and control due to the complicated changing laws, causing unsatisfactory machining quality of CFRP components. Since the most of damage has the same essence: the fiber-matrix interface cracks, this study aims to calculate the distribution of them in edge trimming of CFRP, thereby to obtain the effects of the machining parameters, which could be helpful to guide the optimal selection of the machining parameters in engineering. Through the orthogonal cutting experiments, the quantitative relation between the fiber-matrix interface crack depth and the fiber cutting angle, cutting depth as well as cutting speed is established. According to the analysis on material removal process on any location of the workpiece in edge trimming, the instantaneous cutting parameters are calculated, and the formation process of the fiber-matrix interface crack is revealed. Finally, the computational method for the fiber-matrix interface cracks in edge trimming of CFRP is proposed. Upon the computational results, it is found that the fiber orientations of CFRP workpieces is the most significant factor on the fiber-matrix interface cracks, which can not only change the depth of them from micrometers to millimeters, but control the distribution image of them. Other machining parameters, only influence the fiber-matrix interface cracks depth but have little effect on the distribution image.

DOI number:10.1007/s10443-018-9687-z

Date of Publication:2019-01-01

Pre One:Structural optimization method of multitooth cutter for surface damages suppression in edge trimming of Carbon Fiber Reinforced Plastics Next One:Reversed-Air Cooling Technology for High-Quality Drilling of CFRP