张博宇

个人信息Personal Information

副研究员

博士生导师

硕士生导师

性别:男

出生日期:1992-03-17

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:高分子材料. 机械制造及其自动化

办公地点:化工实验楼A201

电子邮箱:zhangboyu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Reversed-Air Cooling Technology for High-Quality Drilling of CFRP

点击次数:

论文类型:期刊论文

发表时间:2019-01-01

卷号:26

期号:3

页面范围:857-870

ISSN号:0929-189X

摘要:Drilling is commonly adopted in the manufacturing process of large CFRP structural components for meeting assembly requirements. However, undesirable burrs occur frequently due to the weak restrictive conditions at hole-exit and the excessively high cutting temperature, decreasing the components' assembly performance. This study aims to propose a novel damage suppression method which can simultaneously enhance the hole-exit's support and decrease the cutting temperature in drilling of CFRP. For the first time, the idea of non-contact support is proposed and realized by exerting an appropriate cooling airflow from the direction opposite to the tool's feed at the hole-exit, which makes a step forward existing CFRP drilling technology in the aspects of conveniently and also efficiently suppressing the burrs. For determining the appropriate pressure of reversed airflow, in this study a method combining theoretical model and experimental method is employed, and upon which the optimal value and specific influences on hole-exit's qualities are obtained. From the results, it is clear that excessively strong airflow will aggravate fiber-matrix interface cracks in planes of CFRP, while airflow with not enough strength cannot reach the expected effects on the burrs' suppression. In the situation in this study, the optimal pressure is about 0.0083MPa. The proposing of the reversed-air cooling technology is beneficial to the development of high-quality and high-efficiency drilling technology of CFRP.

DOI码:10.1007/s10443-018-9755-4