![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:德国汉诺威大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 生物与纳米力学
电子邮箱:zhanghw@dlut.edu.cn
Shape optimization of coronary artery stent based on a parametric model
点击次数:
论文类型:期刊论文
发表时间:2009-05-01
发表刊物:FINITE ELEMENTS IN ANALYSIS AND DESIGN
收录刊物:SCIE
卷号:45
期号:6-7
页面范围:468-475
ISSN号:0168-874X
关键字:Coronary artery stent; Balloon; Parametric model; FEA; Shape optimization; Large deformation
摘要:The implantation of intravascular stent (IVS) is a kind of coronary angioplasty to restore the blood flow perfusion to the downstream of the heart muscle tissue. The superior mechanical properties of a stent guarantee the successful implantation. This paper intends to improve the mechanical properties of MAC STENT (TM) by utilizing optimization theory instead of the conventional trial-and-error approach. In order to achieve this goal, firstly, a reliable procedure of finite element analysis (FEA) is established based on a parametric geometric model. The FEA overcomes the difficulties due to nonlinearities such as elastoplasticity, large deformation, large strains and contact. It can simulate the stent's deformations during a loading scheme of three phases without any possible failures or irregularities. Secondly, a single objective function, which includes the main mechanical properties of stents, is proposed to replace the initial multi-objective function and then an optimization model is formulated. An optimal design of MAC-J09-3.0 stent is obtained after successful execution of the optimizing process using 41 loops. Its comprehensive mechanical properties are largely improved. It is concluded that the optimization theory is very useful and efficient in the studies of coronary artery stents, although the optimization task encounters many severe difficulties and requires extensive calculation. The result also shows that the single objective function proposed in this paper is practical. (C) 2009 Elsevier B.V. All rights reserved.