![]() |
个人信息Personal Information
教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术
办公地点:大黑楼B807
电子邮箱:zhangsw@dlut.edu.cn
Musical query-by-semantic-description based on convolutional neural network
点击次数:
论文类型:会议论文
发表时间:2017-07-13
收录刊物:EI
卷号:10390 LNCS
页面范围:237-248
摘要:We present a new music retrieval system based on query by semantic description (QBSD) system, by which a novel song can be used as query and transformed into semantic vector by a convolutional neural network. This method based on Supervised Multi-class labeling (SML), which a song can be annotated by some semantically meaningful tags and retrieved relevant song in semantically annotated database. CAL500 data set is used in experiment, we can learn a deep learning model for each tag in semantic space. To improve the annotation effect, loss function adjustment algorithm and SMOTE algorithm are employed. The experiment results show that this model can get songs with high semantically similarity, and provide a more nature way to music retrieval. © Springer International Publishing AG 2017.