张绍武

个人信息Personal Information

教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

学科:计算机应用技术

办公地点:大黑楼B807

电子邮箱:zhangsw@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Musical query-by-semantic-description based on convolutional neural network

点击次数:

论文类型:会议论文

发表时间:2017-07-13

收录刊物:EI

卷号:10390 LNCS

页面范围:237-248

摘要:We present a new music retrieval system based on query by semantic description (QBSD) system, by which a novel song can be used as query and transformed into semantic vector by a convolutional neural network. This method based on Supervised Multi-class labeling (SML), which a song can be annotated by some semantically meaningful tags and retrieved relevant song in semantically annotated database. CAL500 data set is used in experiment, we can learn a deep learning model for each tag in semantic space. To improve the annotation effect, loss function adjustment algorithm and SMOTE algorithm are employed. The experiment results show that this model can get songs with high semantically similarity, and provide a more nature way to music retrieval. © Springer International Publishing AG 2017.