大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 中国科技大学

学位: 博士

所在单位: 软件学院、国际信息与软件学院

学科: 计算机应用技术. 软件工程

电子邮箱: xczhang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Multiple feature-sets method for dependency parsing

点击次数:

论文类型: 会议论文

发表时间: 2014-07-13

收录刊物: EI、CPCI-S、Scopus

页面范围: 57-62

关键字: dependency parsing; semi-supervised methods

摘要: This paper presents a simple and effective approach to improve dependency parsing by exploiting multiple feature-sets. Traditionally, features are extracted by applying the feature templates to all the word pairs(first-order features) and word tuples(second-order features). In this pa per, we show that exploiting different feature templates for different word pairs and word tuples achieves significant improvement over baseline parsers. First, we train a text chunker using a freely available implementation of the first-order linear conditional random fields model. Then we build a clause-chunk tree for a given sentence based on chunking information and punctuation marks. Finally, we extract features for dependency parsing according to multiple feature-sets. We extend the projective parsing algorithms of McDonald[20] and Carreras[1] for our case, experimental results show that our approach significantly outperform the baseline systems without increasing complexity. Given correct chunking information, we improve from baseline accuracies of 91.36% and 92.20% to 93.19% and 93.89%, respectively.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学