大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 中国科技大学

学位: 博士

所在单位: 软件学院、国际信息与软件学院

学科: 计算机应用技术. 软件工程

电子邮箱: xczhang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Novel density-based clustering algorithms for uncertain data

点击次数:

论文类型: 会议论文

发表时间: 2014-07-27

收录刊物: EI、Scopus

卷号: 3

页面范围: 2191-2197

摘要: Density-based techniques seem promising for handling data uncertainty in uncertain data clustering. Nevertheless, some issues have not been addressed well in existing algorithms. In this paper, we firstly propose a novel density-based uncertain data clustering algorithm, which improves upon existing algorithms from the following two aspects: (1) it employs an exact method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in previous work; (2) it introduces new definitions of core object probability and direct reachability probability, thus reducing the complexity and avoiding sampling. We then further improve the algorithm by using a novel assignment strategy to ensure that every object will be assigned to the most appropriate cluster. Experimental results show the superiority of our proposed algorithms over existing ones. Copyright ? 2014, Association for the Advancement of Artificial Intelligence.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学