教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中国科技大学
学位: 博士
所在单位: 软件学院、国际信息与软件学院
学科: 计算机应用技术. 软件工程
电子邮箱: xczhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2014-07-27
收录刊物: EI、Scopus
卷号: 3
页面范围: 2191-2197
摘要: Density-based techniques seem promising for handling data uncertainty in uncertain data clustering. Nevertheless, some issues have not been addressed well in existing algorithms. In this paper, we firstly propose a novel density-based uncertain data clustering algorithm, which improves upon existing algorithms from the following two aspects: (1) it employs an exact method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in previous work; (2) it introduces new definitions of core object probability and direct reachability probability, thus reducing the complexity and avoiding sampling. We then further improve the algorithm by using a novel assignment strategy to ensure that every object will be assigned to the most appropriate cluster. Experimental results show the superiority of our proposed algorithms over existing ones. Copyright ? 2014, Association for the Advancement of Artificial Intelligence.