教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中国科技大学
学位: 博士
所在单位: 软件学院、国际信息与软件学院
学科: 计算机应用技术. 软件工程
电子邮箱: xczhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2012-06-09
收录刊物: EI、Scopus
卷号: 7345 LNAI
页面范围: 808-815
摘要: Isomap is an important dimension reduction method for clustering data with relatively large features. Isomap uses geodesic distance instead of Euclidean distance to reflect geometry of the underlying manifold, while it ignores the classification principle that the distance between samples on different manifolds should be large and the distance between samples on the same manifold should be small. In this paper, we employed a path based distance to extend Isomap for clustering. The path based distance measure strengthens the similarity of the points on the same manifold. The useful behavior of the similarity strengthening Isomap is confirmed through numerical experiments with several data sets. ? 2012 Springer-Verlag.