教授 博士生导师 硕士生导师
性别: 男
毕业院校: 中国科技大学
学位: 博士
所在单位: 软件学院、国际信息与软件学院
学科: 计算机应用技术. 软件工程
电子邮箱: xczhang@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2012-06-01
发表刊物: Advances in information Sciences and Service Sciences
收录刊物: EI、Scopus
卷号: 4
期号: 12
页面范围: 370-377
摘要: Large dimensionality leads to intractable complexity to machine learning algorithms. ISOMAP is a typical manifold learning technique which extracts intrinsic low-dimensional structure from high dimensional data. Since the complexity of eigen-decomposition in ISOMAP is O(n 3), ISOMAP is coupled with Nystr?m method when it is used in large scale manifold learning. The landmark point set is an important factor for the approximation of Nystr?m method. In this paper, we present an incremental sampling scheme. Experimental results show that the Nystr?m extension with incremental sampling performs better than with random sampling.