大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 中国科技大学

学位: 博士

所在单位: 软件学院、国际信息与软件学院

学科: 计算机应用技术. 软件工程

电子邮箱: xczhang@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Exploiting constraint inconsistence for dimension selection in subspace clustering: A semi-supervised approach

点击次数:

论文类型: 期刊论文

发表时间: 2011-10-01

发表刊物: NEUROCOMPUTING

收录刊物: Scopus、SCIE、EI

卷号: 74

期号: 17

页面范围: 3598-3608

ISSN号: 0925-2312

关键字: Semi-supervised learning; Subspace clustering; Constraint inconsistence

摘要: Selecting correct dimensions is very important to subspace clustering and is a challenging issue. This paper studies semi-supervised approach to the problem. In this setting, limited domain knowledge in the form of space level pair-wise constraints, i.e., must-links and cannot-links, are available. We propose a semi-supervised subspace clustering (S(3)C) algorithm that exploits constraint inconsistence for dimension selection. Our algorithm firstly correlates globally inconsistent constraints to dimensions in which they are consistent, then unites constraints with common correlating dimensions, and finally forms the subspaces according to the constraint unions. Experimental results show that S(3)C is superior to the typical unsupervised subspace clustering algorithm FINDIT, and the other constraint based semi-supervised subspace clustering algorithm SC-MINER. (C) 2011 Elsevier B.V. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学