大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

性别:男

毕业院校:中国科技大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:计算机应用技术
软件工程

电子邮箱:

手机版

访问量:

开通时间: ..

最后更新时间:..

当前位置 : 中文主页 >> 科学研究 >> 论文成果
An improved spectral clustering algorithm based on random walk

点击次数:

发布时间:2019-03-09

论文类型:期刊论文

发表时间:2011-09-01

发表刊物:FRONTIERS OF COMPUTER SCIENCE IN CHINA

收录刊物:CSCD、EI、SCIE、Scopus

卷号:5

期号:3

页面范围:268-278

ISSN号:1673-7350

关键字:spectral clustering; random walk; probability transition matrix; matrix perturbation

摘要:The construction process for a similarity matrix has an important impact on the performance of spectral clustering algorithms. In this paper, we propose a random walk based approach to process the Gaussian kernel similarity matrix. In this method, the pair-wise similarity between two data points is not only related to the two points, but also related to their neighbors. As a result, the new similarity matrix is closer to the ideal matrix which can provide the best clustering result. We give a theoretical analysis of the similarity matrix and apply this similarity matrix to spectral clustering. We also propose a method to handle noisy items which may cause deterioration of clustering performance. Experimental results on real-world data sets show that the proposed spectral clustering algorithm significantly outperforms existing algorithms.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学