张雄福

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 曾是Chemical Engineering Journal 国际杂志编委(2007-2017)

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工艺. 膜科学与技术. 功能材料化学与化工

办公地点:西校区化工实验楼C427.

联系方式:0411-84986155

电子邮箱:xfzhang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Direct Hydroxylation of Benzene to Phenol Using Palladium-Titanium Silica lite Zeolite Bifunctional Membrane Reactors

点击次数:

论文类型:期刊论文

发表时间:2014-04-09

发表刊物:INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

收录刊物:SCIE、EI、Scopus

卷号:53

期号:14

页面范围:5636-5645

ISSN号:0888-5885

摘要:A series of titanium silicalite zeolite catalysts were successfully incorporated inside a Pd membrane reactor aiming to improve the direct hydroxylation of benzene to phenol. The correlation between the membrane structure and the reaction efficiency was investigated. The influences of reactor configuration, feed mode, and catalysts on benzene conversion, product yield, hydrogen conversion, and water production rate were examined in detail. The reaction was very sensitive to the porosity of Ti-containing zeolite film and the bonding state of the titanium atom in the titanosilicates (i.e., framework and extraframework titanium). The framework titanium could adsorb active oxygen species to form Ti peroxo species which would suppress the decomposition, while the extraframework titanium promoted the decomposition of active oxygen species leading to more water production. Large inter- and intracrystalline pores as well as mesopores provided the reactive species greater opportunity to contact directly with framework titanium resulting in high reaction activity and hydrogen selectivity (based on the phenol production). Furthermore, these intraparticle pores helped the reactants more favorably to reach the active site than these intercrystalline pores. In contrast, the compact titanium silicalite film with smaller pore size was disadvantageous to the reaction due to the slower diffusion of the reactants and products through the zeolite layer. A possible reaction pathway of palladium titanium silicalite zeolite (Pd-TS) composite membrane for the direct hydroxylation of benzene to phenol was also proposed based on the reaction results.