个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 动力学与控制. 计算力学
办公地点:综合实验1号楼505
电子邮箱:zhangyh@dlut.edu.cn
Nonstationary seismic response analysis of long-span structures by frequency domain method considering wave passage effect
点击次数:
论文类型:期刊论文
发表时间:2018-06-01
发表刊物:SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
收录刊物:SCIE、EI
卷号:109
页面范围:1-9
ISSN号:0267-7261
关键字:Seismic analysis; Wave passage effect; Nonstationary; Evolutionary power spectral density; Frequency domain method
摘要:In this paper, a frequency domain method is proposed for the nonstationary seismic analysis of long-span structures subjected to random ground motions considering the wave passage effect. Based on the correlation analysis theory and fast Fourier transform (FFT), a semi-analytical solution is derived for the evolutionary power spectral density of the random response of long-span structures in the frequency domain. The expression of this solution indicates that the evolutionary property of nonstationary random responses can be determined completely by the modulation function of random ground motions, and hence the solution has clear physical interpretations. For slowly varying modulation functions, the FFT can be implemented with a small sampling frequency, so the present method is very efficient within a given accuracy. In numerical examples, nonstationary random responses of a long-span cable stayed bridge to random ground motions with the wave passage effect are studied by the present method, and comparisons are made with those of the pseudo excitation method (PEM) to verify the present method. Then the accuracy and efficiency of the present method with different sampling frequencies are compared and discussed. Finally, the influences of the apparent velocity of the seismic waves on nonstationary random responses are investigated.