个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 动力学与控制. 计算力学
办公地点:综合实验1号楼505
电子邮箱:zhangyh@dlut.edu.cn
Reliability analysis of subsea pipelines under spatially varying ground motions by using subset simulation
点击次数:
论文类型:期刊论文
发表时间:2018-04-01
发表刊物:RELIABILITY ENGINEERING & SYSTEM SAFETY
收录刊物:SCIE、EI
卷号:172
页面范围:74-83
ISSN号:0951-8320
关键字:Subsea pipeline; Random earthquake; Spatially varying ground motion; Unilateral contact; Reliability; Subset simulation
摘要:A computational framework is presented to calculate the reliability of subsea pipelines subjected to a random earthquake. This framework takes full account of the physical features of pipelines and the earthquake, and also retains high computing precision and efficiency. The pipeline and the seabed are modelled as a Timoshenko beam and a Winkler foundation, respectively, while the unilateral contact effect between them is considered. The random earthquake is described by its power spectrum density function and its spatial variation is considered. After suitable discretizations in the spatial domain by the finite element method and the time domain by the Newmark integration method, the dynamic unilateral contact problem is derived as a linear complementarity problem (LCP). Subset Simulation (SS), which is an advanced Monte Carlo simulation approach, is used to estimate the reliability of pipelines. By means of numerical examples, the accuracy and robustness of SS are demonstrated by comparing with the direct Monte Carlo simulation (DMCS). Then a sensitivity analysis of the reliability and a failure analysis are performed to identify the influential system parameters. Finally, failure probabilities of subsea pipelines are assessed for three typical cases, namely, with and without the unilateral contact effect, with different grades of spatial variations and with different free spans. The influences of these effects or parameters on the reliability are discussed qualitatively. (C) 2017 Elsevier Ltd. All rights reserved.