张昭

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Professor in Process Mechanics

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:力学与航空航天学院

学科:制造工艺力学. 工程力学. 计算力学

办公地点:综合实验1号楼619

联系方式:0411-84708432

电子邮箱:zhangz@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Computational investigations on reliable finite element-based thermomechanical-coupled simulations of friction stir welding

点击次数:

论文类型:期刊论文

发表时间:2012-06-01

发表刊物:INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

收录刊物:SCIE、EI、Scopus

卷号:60

期号:9-12

页面范围:959-975

ISSN号:0268-3768

关键字:Friction stir welding; Constitutive model; Contact model; Material flow

摘要:The finite element method was used in the current work to study the selection of the constitutive models, the selection of the frictional coefficients, the selection of the contact models and the selection of the physical parameters. Numerical results show that the shape of the shoulder can affect the material flows obviously and a total of about 54.3% energy can be transformed into heat in friction stir welding/friction stir processing (FSW/FSP). When the physical parameters are further considered to be functions of temperature, the predicted temperature is lower than the one in which the physical parameters are constant. When strain-hardening effect is considered, the equivalent plastic strain is decreased and the corresponding energy dissipated by plastic deformation is decreased. The effect of the frictional coefficient on the prediction of the temperature field in FSW/FSP is small when the selection of the frictional coefficient is located in a reasonable small extent. The computational costs in the simulation of FSW/FSP are not only affected by the mesh sizes and wave speed but also affected by the mesh distortions. So, mesh distortions should be considered to be minimized in the numerical modeling of FSW/FSP to reduce the computational costs.