• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Topology optimization of piezoelectric smart structures for minimum energy consumption under active control

    点击次数:

    论文类型:期刊论文

    发表时间:2018-07-01

    发表刊物:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

    收录刊物:SCIE

    卷号:58

    期号:1

    页面范围:185-199

    ISSN号:1615-147X

    关键字:Topology optimization; Piezoelectric structure; Energy consumption; Active control; Electrode

    摘要:This paper investigates topology optimization of the electrode coverage over piezoelectric patches attached to a thin-shell structure to reduce the energy consumption of active vibration control under harmonic excitations. The constant gain velocity feedback control method is employed, and the structural frequency response under control is analyzed with the finite element method. In the mathematical formulation of the proposed topology optimization model, the total energy consumption of the control system is taken as the objective function, and a constraint of the maximum allowable dynamic compliance is considered. The pseudo-densities indicating the distribution of surface electrode coverage over the piezoelectric layers are chosen as the design variables, and a penalized model is employed to relate the active damping effect and these design variables. The sensitivity analysis scheme of the control energy consumption with respect to the design variables is derived with the adjoint-variable method. Numerical examples demonstrate that the proposed optimization model is able to generate optimal topologies of electrode coverage over the piezoelectric layers, which can effectively reduce the energy consumption of the control system. Also, numerical comparisons with a minimum-volume optimization model show the advantage of the proposed method with respect to energy consumption. The proposed method may provide useful guidance to the layout optimization of piezoelectric smart structures where the energy supply is limited, such as miniature vibration control systems.