• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Layout design of piezoelectric patches in structural linear quadratic regulator optimal control using topology optimization

    点击次数:

    论文类型:期刊论文

    发表时间:2018-06-01

    发表刊物:JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES

    收录刊物:SCIE

    卷号:29

    期号:10

    页面范围:2277-2294

    ISSN号:1045-389X

    关键字:Topology optimization; smart structure; piezoelectric; linear quadratic regulator; active control

    摘要:This article investigates topology optimization for piezoelectric thin-shell structures under the linear quadratic regulator optimal control. In the optimization model, the structural dynamic compliance is taken as the measure of control performance, and the relative densities describing the distribution of the piezoelectric material are considered as design variables. An artificial material model with penalization on both mechanical and piezoelectric properties is employed. For the purpose of improving computational efficiency of the sensitivity and response analysis, modal superposition method is adopted. The derivative of the Riccati equation governing the linear quadratic regulator control with respect to the design variables is shown to be a Lyapunov equation. In conjunction with the adjoint variable method, the design sensitivities of the dynamic compliance are obtained using the solution of the Lyapunov equation. Numerical examples demonstrate the validity of the proposed method and show the significance of layout design of piezoelectric sensors/actuators. The influences of some key factors on the optimization solutions are discussed. It is shown that the optimized layout of the piezoelectric patches may be significantly influenced by the excitation frequency, but only slightly affected by the choice of the weighting matrix in the linear quadratic regulator control. This work aims to provide an efficient gradient-based mathematical programming method for guiding the layout design of actuators and sensors in smart structures under optimal vibration control. However, the considered model is a purely mathematical one without consideration of engineering realization, thus the optimization result may only serve as an upper bound for practically realizable control performance.