• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Optimal topology design for stress-isolation of soft hyperelastic composite structures under imposed boundary displacements

    点击次数:

    论文类型:期刊论文

    发表时间:2017-05-01

    发表刊物:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

    收录刊物:SCIE、EI、Scopus

    卷号:55

    期号:5

    页面范围:1747-1758

    ISSN号:1615-147X

    关键字:Composite structure; Hyperelasticity; Topology optimization; Prescribed boundary displacement; Stress constraint

    摘要:Soft hyperelastic composite structures that integrate soft hyperelastic material and linear elastic hard material can undergo large deformations while isolating high strain in specified locations to avoid failure. This paper presents an effective topology optimization-based methodology for seeking the optimal united layout of hyperelastic composite structures with prescribed boundary displacements and stress constraints. The optimization problem is modeled based on the power-law interpolation scheme for two candidate materials (one is soft hyperelastic material and the other is linear elastic material). The epsilon-relaxation technique and the enhanced aggregation method are employed to avoid stress singularity and improve the computational efficiency. Then, the topology optimization problem can be readily solved by a gradient-based mathematical programming algorithm using the adjoint variable sensitivity information. Numerical examples are given to show the importance of considering prescribed boundary displacements in the design of hyperelastic composite structures. Moreover, numerical solutions demonstrate the validity of the present model for the optimal topology design with a stress-isolated region.