• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Robust shape and topology optimization considering geometric uncertainties with stochastic level set perturbation

    点击次数:

    论文类型:期刊论文

    发表时间:2017-04-06

    发表刊物:INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

    收录刊物:SCIE、EI、Scopus

    卷号:110

    期号:1

    页面范围:31-56

    ISSN号:0029-5981

    关键字:geometric uncertainties; level set; polynomial chaos; shape sensitivity; robust shape; topology optimization

    摘要:When geometric uncertainties arising from manufacturing errors are comparable with the characteristic length or the product responses are sensitive to such uncertainties, the products of deterministic design cannot perform robustly. This paper presents a new level set-based framework for robust shape and topology optimization against geometric uncertainties. We first propose a stochastic level set perturbation model of uncertain topology/shape to characterize manufacturing errors in conjunction with Karhunen-Loeve (K-L) expansion. We then utilize polynomial chaos expansion to implement the stochastic response analysis. In this context, the mathematical formulation of the considered robust shape and topology optimization problem is developed, and the adjoint-variable shape sensitivity scheme is derived. An advantage of this method is that relatively large shape variations and even topological changes can be accounted for with desired accuracy and efficiency. Numerical examples are given to demonstrate the validity of the present formulation and numerical techniques. In particular, this method is justified by the observations in minimum compliance problems, where slender bars vanish when the manufacturing errors become comparable with the characteristic length of the structures. Copyright (c) 2016 John Wiley & Sons, Ltd.