• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Integrated topology optimization of multi-component structures considering connecting interface behavior

    点击次数:

    论文类型:期刊论文

    发表时间:2018-11-01

    发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

    收录刊物:SCIE

    卷号:341

    页面范围:851-887

    ISSN号:0045-7825

    关键字:Integrated topology optimization; Interface; Multi-component; Multi-material; Level set; Cohesive model

    摘要:It is often highly desirable to simultaneously optimize the layout of embedded functional components and the topology of the host structure supporting these components to achieve the best overall performance while still ensuring the structural integrity. We propose a topology optimization framework to account for connecting interface behaviors between the components and the host structure. Here we treat the connecting interfaces with the cohesive zone model to reflect the adhesively bonded interface behaviors. A conforming mesh in conjunction with interface elements is employed to discretize the evolving structure while accounting for the strong discontinuity of displacement field across the material interfaces. To give a clear representation of structural boundaries and the connecting interfaces, we also suggest a multi-material interpolation model in the level set framework, which can conveniently define the connecting interface locations and describe multi-material distribution without redundant phase in the design domain. The objective function is defined as the sum of the strain energy and the work done by the traction on the connecting interface, and the evolution velocities of the level set and the embedded components are treated as design variables. These design variables are updated with the MMA optimizer on the basis of adjoint-variable sensitivity analysis. This optimization formulation allows multiple constraints and mixed design variables (i.e level set design variables and components' design variables) to be easily handled in level set based optimization. The design is advanced by the Hamilton-Jacobi equation with the velocity design variables as input. Numerical examples demonstrate the validity and applicability of the proposed method. (C) 2018 Elsevier B.V. All rights reserved.