• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model

    点击次数:

    论文类型:期刊论文

    发表时间:2019-04-15

    发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

    收录刊物:EI、SCIE

    卷号:347

    页面范围:340-364

    ISSN号:0045-7825

    关键字:Concurrent two-scale design; Topology optimization; Velocity field level set method; Multi-material; Multiple unit cells

    摘要:This paper studies concurrent two-scale design optimization of composite structures filled with multiple microstructural unit cells. The task of the design problem is to simultaneously optimize microstructural configurations of the unit cells and their spatial distribution in the macroscale. To this end, a new topology optimization framework based on combined topology representation of the density model and the level set model is proposed. The homogenization method is used to link the material microstructural design and the macroscale design by evaluating the effective properties of the microstructures. In the microscale, topology optimization of multiple microstructural unit cells is performed with the density-based method. In the macroscale design, the distribution of multiple microstructural unit cells is optimized by the velocity field level set method, which inherits advantages of the implicit geometrical representation of the conventional level set model (relatively clear and smooth material boundaries/interfaces, more natural description of topological evolution). Moreover, the velocity field level set method maps the variational boundary shape optimization problem into a finite-dimensional design space, thus making it relatively easy and efficient to employ general mathematical programming algorithms to handle the multiple constraints and two types of design variables in the concurrent two-scale design problem. Numerical examples show that the present concurrent two-scale design method can generate meaningful designs of hierarchical cellular structures with well-defined boundaries and material interfaces. (C) 2018 Elsevier B.V. All rights reserved.