• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Multi-material structural topology optimization considering material interfacial stress constraints

    点击次数:

    论文类型:期刊论文

    发表时间:2020-05-01

    发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

    收录刊物:EI、SCIE

    卷号:363

    ISSN号:0045-7825

    关键字:Topology optimization; Multi-material; Interfacial stress constraint; Interfacial transmission condition; Interface-conforming mesh; Level set

    摘要:For multi-material structures, ensuring material interface strength is particularly vital for their integrity and durability. In the present study, we incorporate material interfacial stress constraints into topology optimization of bi-material structures. A multi-material level set method, in conjunction with interface-conforming finite element meshes, is employed to describe the distribution of different material phases and to capture the evolution of the material interfaces. The use of interface-conforming meshes enables accurate analysis of both interfacial stresses and their design sensitivities. Noting that the interfacial strength failure is usually characterized by a tension/compression asymmetric mechanism, we adopt an equivalent interfacial stress (which was originally proposed for strength criterion concerning composite delamination) expressed by the interface tensile and tangential stresses in the considered strength criterion. To handle the local nature of such interfacial stress constraints, we propose a global stress measure, which is an approximation of the p-norm of the equivalent interfacial stress field. An adjoint sensitivity analysis scheme is derived by taking into account the interface transmission conditions. To treat multiple constraints (the volume constraints and the interfacial stress constraint) in level set-based topology optimization, the velocity field-level set method is employed. Numerical examples are presented to show effectiveness of the present method. It is also shown that the tension/compression asymmetric interfacial strength criteria may lead to asymmetric designs. (C) 2020 Elsevier B.V. All rights reserved.