• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation

    点击次数:

    论文类型:期刊论文

    发表时间:2014-09-01

    发表刊物:COMPUTATIONAL MECHANICS

    收录刊物:SCIE、EI、Scopus

    卷号:54

    期号:3

    页面范围:629-644

    ISSN号:0178-7675

    关键字:Topology optimization; Geometrical nonlinearity; Element-free Galerkin method; Independent point-wise density interpolation; Sensitivity

    摘要:Based on the element-free Galerkin (EFG) method, an analysis-independent density variable approach is proposed for topology optimization of geometrically nonlinear structures. This method eliminates the mesh distortion problem often encountered in the finite element analysis of large deformations. The topology optimization problem is formulated on the basis of point-wise description of the material density field. This density field is constructed by a physical meaning-preserving interpolation with the density values of the design variable points, which can be freely positioned independently of the field points used in the displacement analysis. An energy criterion of convergence is used to resolve the well-known convergence difficulty, which would be usually encountered in low density regions, where displacements oscillate severely during the optimization process. Numerical examples are given to demonstrate the effectiveness of the developed approach. It is shown that relatively clear optimal solutions can be achieved, without exhibiting numerical instabilities like the so-called "layering" or "islanding" phenomena even in large deformation cases. This study not only confirms the potential of the EFG method in topology optimization involving large deformations, but also provides a novel topology optimization framework based on element-free discretization of displacement and density fields, which can also easily incorporate other meshless analysis methods for specific purposes.