• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    An enhanced aggregation method for topology optimization with local stress constraints

    点击次数:

    论文类型:期刊论文

    发表时间:2013-02-01

    发表刊物:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

    收录刊物:SCIE、EI

    卷号:254

    页面范围:31-41

    ISSN号:0045-7825

    关键字:Aggregation function; Topology optimization; Stress constraint; Adjoint variable method

    摘要:By introducing a new reduction parameter into the Kreisselmeier-Steihauser (K-S) function, this paper presents a general K-S formulation providing an approximation to the feasible region restricted by active constraints. The approximation is highly accurate even when the aggregation parameter takes a relatively small value. Numerical difficulties, such as high nonlinearity and serious violation of local constraints that may be exhibited by the original K-S function, are thus effectively alleviated. In the considered topology optimization problem, the material volume is to be minimized under local von Mises stress constraints imposed on all the finite elements. An enhanced aggregation algorithm based on the general K-S function, in conjunction with a "removal and re-generation" strategy for selecting the active constraints, is then proposed to treat the stress constraints of the optimization problem. Numerical examples are given to demonstrate the validity of the present algorithm. It is shown that the proposed method can achieve reasonable solutions with a high computational efficiency in handling large-scale stress constrained topology optimization problems. (C) 2012 Elsevier B.V. All rights reserved.