• 更多栏目

    亢战

    • 教授     博士生导师   硕士生导师
    • 主要任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 其他任职:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
    • 性别:男
    • 毕业院校:stuttgart大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 计算力学. 航空航天力学与工程. 固体力学
    • 办公地点:综合实验一号楼522房间
      https://orcid.org/0000-0001-6652-7831
      http://www.ideasdut.com
      https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
    • 联系方式:zhankang#dlut.edu.cn 84706067
    • 电子邮箱:zhankang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Topology Optimization for Static Shape Control of Piezoelectric Plates With Penalization on Intermediate Actuation Voltage

    点击次数:

    论文类型:期刊论文

    发表时间:2012-05-01

    发表刊物:JOURNAL OF MECHANICAL DESIGN

    收录刊物:SCIE、EI、Scopus

    卷号:134

    期号:5

    ISSN号:1050-0472

    关键字:optimal design; topology optimization; piezoelectric; shape control; actuation voltage

    摘要:This paper investigates the simultaneous optimal distribution of structural material and trilevel actuation voltage for static shape control applications. In this optimal design problem, the shape error between the actuated and the desired shapes is chosen as the objective function. The energy and the material volume are taken as constraints in the optimization problem formulation. The discrete-valued optimization problem is relaxed using element-wise continuous design variables representing the relative material density and the actuation voltage level. Artificial interpolation models which relate the mechanical/piezoelectrical properties of the material and the actuation voltage to the design variables are employed. Therein, power-law penalization functions are used to suppress intermediate values of both the material densities and the control voltage. The sensitivity analysis procedure is discussed, and the design variables are optimized by using the method of moving asymptotes (MMA). Finally, numerical examples are presented to demonstrate the applicability and effectiveness of the proposed method. It is shown that the proposed method is able to yield distinct material distribution and to suppress intermediate actuation voltage values as required. [DOI:10.1115/1.4006527]