大连理工大学  登录  English 
赵纪军
点赞:

教授   博士生导师   硕士生导师

任职 : 三束材料改性教育部重点实验室主任

性别: 男

毕业院校: 南京大学

学位: 博士

所在单位: 物理学院

学科: 凝聚态物理

电子邮箱: zhaojj@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

2D Boron Sheets: Structure, Growth, and Electronic and Thermal Transport Properties

点击次数:

论文类型: 期刊论文

发表时间: 2020-02-19

发表刊物: ADVANCED FUNCTIONAL MATERIALS

收录刊物: SCIE

卷号: 30

期号: 8,SI

页面范围: 1904349-

ISSN号: 1616-301X

关键字: boron; borophene; electronic properties; growth; thermal transport

摘要: The structures of boron clusters, such as flat clusters and fullerenes, resemble those of carbon. Various two-dimensional (2D) borophenes have been proposed since the production of graphene. The recent successful fabrication of borophene sheets has prompted extensive researches, and some unique properties are revealed. In this review, the recent theoretical and experimental progress on the structure, growth, and electronic and thermal transport properties of borophene sheets is summarized. The history of prediction of boron sheet structures is introduced. Existing with a mixture of triangle lattice and hexagonal lattice, the structures of boron sheets have peculiar characteristics of polymorphism and show significant dependence on the substrate. Due to the unique structure and complex B-B bonds, borophene sheets have many interesting electronic and thermal transport properties, such as strong nonlinear effect, strong thermal transport anisotropy, high thermal conductance in the ballistic transport and low thermal conductivity in the diffusive transport. The growth mechanism and synthesis of borophene sheets on different metal substrates are also presented. The successful prediction and synthesis will shed light on the exploration of new novel materials. Besides, the outstanding and peculiar properties of borophene make them tempting platform for exploring novel physical phenomena and extensive applications.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学