大连理工大学  登录  English 
赵纪军
点赞:

教授   博士生导师   硕士生导师

任职 : 三束材料改性教育部重点实验室主任

性别: 男

毕业院校: 南京大学

学位: 博士

所在单位: 物理学院

学科: 凝聚态物理

电子邮箱: zhaojj@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

2D tetragonal transition-metal phosphides: an ideal platform to screen metal shrouded crystals for multifunctional applications

点击次数:

论文类型: 期刊论文

发表时间: 2020-03-13

发表刊物: Nanoscale

收录刊物: PubMed

ISSN号: 2040-3372

摘要: Two-dimensional (2D) metal shrouded crystals, a new kind of conceptional material, have attracted remarkable attention due to their unique properties. Here, we propose a novel class of 2D metal shrouded materials, tetragonal transition-metal phosphides (TM2Ps), which show peculiar features of coexistence of in-plane TM-P covalent bonds and TM-TM interlayer metallic bonds. From a combination of high throughput searching and first-principles calculations, Fe2P, Co2P, Ni2P, Ru2P, and Pd2P monolayer sheets stand out because they simultaneously have high thermal, dynamical, and mechanical stability. All these five TM2P materials are metals, especially Pd2P, which can be a promising catalyst for the hydrogen evolution reaction with a very low overpotential. Moreover, these 2D TM2Ps show good ductility since they can withstand a tensile strain of up to 45%. Even in the large strain range, the strengthened interlayer TM-TM metallic bonds dominate the deformation behavior, and the corresponding metallicity of 2D TM2Ps is well preserved. Due to the competition between the d-d direct exchange and d-p-d superexchange interactions, Fe2P behaves as an antiferromagnetic material with a TN of 23 K, while Co2P is a ferromagnetic material with a TC of 580 K. Our results not only enrich the database of 2D metal shrouded crystals, but also provide novel 2D materials as promising candidates for multifunctional applications in nanoelectronics, spintronics and electrocatalysis.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学