教授 博士生导师 硕士生导师
任职 : 三束材料改性教育部重点实验室主任
性别: 男
毕业院校: 南京大学
学位: 博士
所在单位: 物理学院
学科: 凝聚态物理
电子邮箱: zhaojj@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2009-04-09
发表刊物: JOURNAL OF PHYSICAL CHEMISTRY C
收录刊物: SCIE、EI、Scopus
卷号: 113
期号: 14
页面范围: 5368-5375
ISSN号: 1932-7447
摘要: Water molecules confined inside a single-walled (6, 6) carbon nanotube were investigated using density functional theory. In this narrow-sized carbon nanotube (of about 0.8 nm in diameter), the encapsulated water molecules form chain-like configurations via hydrogen bonding. As compared to the water chains in vacuum, the intramolecular charge transfer in the encapsulated water chain is enhanced and the dipole moment is reduced due to the screening effect of the carbon nanotube. The tube-molecule interaction characterized by the coupling energy is about 0.28 eV per water molecule by local density approximation and 0.1 eV by general gradient approximation; the latter one is close to the results by empirical potentials. Weak coupling between the molecular orbitals of the encapsulated water molecules and the delocalized pi electrons from the carbon nanotube was observed, implying that the tube-water interaction is not a simple effect of geometry confinement. Vibrational analysis revealed some unique hydrogen-bond modes for the water chains as well as red shift of the O-H stretching modes for the encapsulated water molecules with regard to the vacuum frequencies due to the tube-water interaction.