大连理工大学  登录  English 
赵旭东
点赞:

特聘教授   博士生导师   硕士生导师

性别: 男

毕业院校: 哈尔滨工业大学

学位: 博士

所在单位: 控制科学与工程学院

学科: 控制理论与控制工程

办公地点: B1209

联系方式: 15940606627

电子邮箱: xudongzhao@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Observer-based adaptive neural tracking control for output-constrained switched MIMO nonstrict-feedback nonlinear systems with unknown dead zone

点击次数:

论文类型: 期刊论文

发表时间: 2020-01-01

发表刊物: NONLINEAR DYNAMICS

收录刊物: EI、SCIE

卷号: 99

期号: 2

页面范围: 1019-1036

ISSN号: 0924-090X

关键字: Adaptive neural control; Average dwell time (ADT); Switched MIMO nonlinear systems; Nonstrict-feedback; Backstepping; Output constraints

摘要: In this paper, the issue of adaptive neural tracking control for uncertain switched multi-input multi-output (MIMO) nonstrict-feedback nonlinear systems with average dwell time is studied. The system under consideration includes unknown dead-zone inputs and output constraints. The uncertain nonlinear functions are identified via neural networks. Also, neural networks-based switched observer is constructed to approximate all unmeasurable states. By means of the information for dead-zone slopes and barrier Lyapunov function (BLF), the problems of dead-zone inputs and output constraints are tackled. Furthermore, dynamic surface control (DSC) scheme is employed to ensure that the computation burden is greatly reduced. Then, an observer-based adaptive neural control strategy is developed on the basis of backstepping technique and multiple Lyapunov functions approach. Under the designed controller, all the signals existing in switched closed-loop system are bounded, and system outputs can track the target trajectories within small bounded errors. Finally, the feasibility of the presented control algorithm is proved via simulation results.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学