赵智强   

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

MORE> Recommended Ph.D.Supervisor Recommended MA Supervisor Institutional Repository Personal Page
Language:English

Paper Publications

Title of Paper:Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials

Hits:

Date of Publication:2017-05-15

Journal:WATER RESEARCH

Included Journals:SCIE、EI、PubMed、ESI高被引论文、Scopus

Volume:115

Page Number:266-277

ISSN No.:0043-1354

Key Words:Anaerobic digestion (AD); Granular activated carbon (GAC); Magnetite; Direct interspecies electron transfer (DIET)

Abstract:Conductive materials have been widely investigated to accelerate and stabilize the conversion of organic wastes to methane. However, the potential mechanisms involved with different types of conductive materials are still unclear. In this study, magnetite (Fe3O4) and granular activated carbon (GAC), as the two typical conductive materials, were respectively supplemented to acidogenesis and methanogenesis of a two-phase anaerobic digestion (AD) system in an attempt to explore their different mechanisms. The results showed that, magnetite supplemented to the acidogenic phase could enhance the decomposition of complex organics into simples, but significantly raise the hydrogen partial pressure as well as enrich the hydrogen-utilizing methanogens, which were not expected for aceticlastic methanogenesis known as a mainstream of methanogenesis in most of traditional digesters. GAC supplemented to the methanogenic phase had less influences on syntrophic metabolism of alcohols and fatty acids when acidogenesis was ineffective or out of work. Microbial community analysis suggested that direct interspecies electron transfer (DIET) had been established on the GAC, though the insignificant improvement of performances. Once magnetite was supplemented to the acidogenesis to improve the acidification efficiency, the syntrophic conversion of alcohols and fatty acids to methane in the GAC-supplemented methanogenic phase was significantly improved. These results suggested that, DIET was unlikely to participate in the direct decomposition of complex organics, even in the presence of GAC, but it could work effectively once acidogenesis functioned well. (C) 2017 Elsevier Ltd. All rights reserved.

Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:    MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open time:..

The Last Update Time: ..