赵智强

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程

办公地点:西部校区 新环境楼 B607

电子邮箱:zhiqiangzhao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Enhanced decomposition of waste activated sludge via anodic oxidation for methane production and bioenergy recovery

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:INTERNATIONAL BIODETERIORATION & BIODEGRADATION

收录刊物:SCIE、EI、Scopus

卷号:106

页面范围:161-169

ISSN号:0964-8305

关键字:Anaerobic sludge digestion; Sludge hydrolysis; Microbial electrolysis cell (MEC); Anodic oxidation

摘要:Anaerobic digestion operated in microbial electrolysis cells (MECs) may have a higher methane production since the potential cathodic reduction of carbon dioxide. However, the complicated organic components in municipal sludge retard the sludge hydrolysis and limit the efficiency of methanogenesis. Sludge hydrolysis and its effects on methanogenesis and organic matter removal in a single-chamber MEC were investigated in this study. As compared with the control reactor without electric field, total chemical oxygen demand (TCOD) removal and methane production in MEC with applied voltage of 0.8 V increased by 26% and 28%, respectively. Energy income from the increased methane was about five folds of the electric energy supply. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis indicated that anodic oxidation of MEC significantly improved the disintegration of sludge flocs and cell walls. Anodic Coulombic efficiency and current density further revealed that anodic oxidation coupled with cathodic reduction of carbon dioxide was the predominant mechanism in the improvement of sludge decomposition and methane production during the initial fermentation, which hereby accelerated the rate of sludge hydrolysis. (C) 2015 Elsevier Ltd. All rights reserved.