个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:人工智能
办公地点:大连理工大学创新园大厦B911
电子邮箱:zhouhuiwei@dlut.edu.cn
Integrating Word Sequences and Dependency Structures for Chemical-Disease Relation Extraction
点击次数:
论文类型:会议论文
发表时间:2017-01-01
收录刊物:SCIE、EI、CPCI-S
卷号:10565
页面范围:97-109
关键字:CDR extraction; CNN; Word sequences; Dependency structures
摘要:Understanding chemical-disease relations (CDR) from biomedical literature is important for biomedical research and chemical discovery. This paper uses a k-max pooling convolutional neural network (CNN) to exploit word sequences and dependency structures for CDR extraction. Furthermore, an effective weighted context method is proposed to capture semantic information of word sequences. Our system extracts both intra-and inter-sentence level chemical-disease relations, which are merged as the final CDR. Experiments on the BioCreative V CDR dataset show that both word sequences and dependency structures are effective for CDR extraction, and their integration could further improve the extraction performance.