• 更多栏目

    周长俊

    • 副教授       硕士生导师
    • 性别:男
    • 毕业院校:田纳西大学
    • 学位:博士
    • 所在单位:交通运输系
    • 学科:道路与铁道工程. 市政工程
    • 办公地点:大连理工大学综合实验4号楼515
    • 联系方式:zhouchangjun@dlut.edu.cn
    • 电子邮箱:zhouchangjun@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Modeling of the Complex Modulus of Asphalt Mastic with Biochar Filler Based on the Homogenization and Random Aggregate Distribution Methods

    点击次数:

    论文类型:期刊论文

    发表时间:2020-04-23

    发表刊物:ADVANCES IN MATERIALS SCIENCE AND ENGINEERING

    收录刊物:SCIE

    卷号:2020

    ISSN号:1687-8434

    摘要:The disposal of agricultural straw has been a severe environmental concern in China and many other countries. In this study, the complex modulus of using biochar converted from straw as an alternative mineral filler in asphalt mastic was investigated through both laboratory tests and modeling. The experimental results indicated that the biochar can provide asphalt mastic higher stiffness than the conventional granite mineral filler. It was believed that the special porous structure of biochar providing a thicker coating layer of mineral filler increases the stiffness modulus of asphalt mastic. To consider this factor into the micromechanical model, a modified generalized self-consistent model (MGSCM) with a coating layer was proposed. Besides, the finite element (FE) microstructural model with a coating layer generated by random aggregate distribution method was used to numerically evaluate the effect of the coating layer on the complex modulus of asphalt mastics. The predicted results indicated that the generalized self-consistent model (MGSCM) with a coating layer is an efficient and accurate model for predicting the complex modulus of asphalt mastics. Moreover, the FE modeling proved that the coating layer can significantly improve the complex modulus of asphalt mastics. Therefore, the experiments and modeling carried out in this study provided insight for biochar applications to improve the performance of asphalt mixtures.