• 更多栏目

    宗立率

    • 副教授     博士生导师   硕士生导师
    • 任职 : 院长助理
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化工学院
    • 学科:高分子材料. 高分子化学与物理
    • 办公地点:西部校区化工实验楼A段304室
    • 电子邮箱:zongls@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Controllable Fabrication of Zinc Borate Hierarchical Nanostructure on Brucite Surface for Enhanced Mechanical Properties and Flame Retardant Behaviors

    点击次数:

    论文类型:期刊论文

    发表时间:2014-05-28

    发表刊物:ACS APPLIED MATERIALS & INTERFACES

    收录刊物:SCIE、EI、PubMed、Scopus

    卷号:6

    期号:10

    页面范围:7223-7235

    ISSN号:1944-8244

    关键字:brucite; zinc borate; hierarchical structure; interfacial interaction; mechanical properties; flame retardant

    摘要:A novel and efficient halogen-free composite flame retardant (CFR) consisting of a brucite core and a fine zinc borate [Zn6O(OH)(BO3)(3)] hierarchical nanostructure shell was designed and synthesized via a facile nanoengineering route. It had been demonstrated that this unique hybrid structure possessed a high BET specific surface area (65 m(2)/g) and could significantly enhance the interfacial interaction when mixing with ethylene-vinyl acetate (EVA). This improved the transfer of stress between CFR particles and EVA matrix and increased the viscosity of EVA/EVA blends, which was beneficial for droplet inhibition and char forming. The mechanical properties and flammability behaviors of the EVA/CFR blends had been compared with the EVA/physical mixture (PM, with the given proportion of brucite and Zn6O(OH)(BO3)(3)). The mechanical properties of EVA/CFR blends, especially the tensile strength (TS), presented a remarkable increase reaching at least a 20% increment. Meanwhile, with the same 45 wt % of fillers, the EVA/CFR formulation could achieve a limiting oxygen index (LOI) value of 33 (37.5 % higher than that of EVA/PM blends) and UL-94 V-0 rating. Moreover, the heat release rate (HRR), peak heat release rate (PHRR), total heat released (THR), smoke production rate (SPR) and mass loss rate (MLR) were considerably reduced, especially PHRR and SPR for EVA/CFR blends were reduced to 32%. According to this study, the design of fine structure might pave the way for the future development of halogen-free flame retardants combining both enhanced mechanical properties and excellent flame retardant behaviors.